QUANTIFIED NUTRITION is, at its very core, an experiment in customer service. Quantified Nutrition can do more than sell products, and we believe that as a company focused on helping our customers, we should do more.

We have curated a collection of the studies and literature that our products are based on, empowering our customers to decide for themselves if Quantified Nutrition’s products are right for them. Read deep enough, and you will realize that Quantified Nutrition stuck with the basics and provided products with an incredible amount of scientific backing, and then made them taste great!

 

Supplement Well, Train Harder.

-TM Quantified Nutrition

 

Protein (Q//WHEY)

 

Urbina, S., Hayward, S., Outlaw, J., Holt, J., Burks, B., Cox, B., . . . Wilborn, C. (2013). Performance and body composition effects of a pre-workout supplement and post-workout protein intake in trained crossfit individuals. Journal of the International Society of Sports Nutrition, 10(Suppl 1). doi:10.1186/1550-2783-10-s1-p28

Helms, E. R., Aragon, A. A., & Fitschen, P. J. (2014). Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. Journal of the International Society of Sports Nutrition, 11(1), 20. doi:10.1186/1550-2783-11-20

Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010;92:1080–1088

Atherton, P. J., & Smith, K. (2012, March 01). Muscle protein synthesis in response to nutrition and exercise. Retrieved May 27, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381813/

Børsheim, E., Tipton, K. D., Wolf, S. E., & Wolfe, R. R. (2002, October 01). Essential amino acids and muscle protein recovery from resistance exercise. Retrieved May 27, 2017, from http://ajpendo.physiology.org/content/283/4/E648

Fujita, S., Dreyer, H. C., Drummond, M. J., Glynn, E. L., Cadenas, J. G., Yoshizawa, F., . . . Rasmussen, B. B. (2007, July 05). Nutrient signalling in the regulation of human muscle protein synthesis. Retrieved May 27, 2017, from http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2007.134593/full

 

Carbohydrates (Q//FUEL)

 

Camps, G., Mars, M., Graaf, C. D., & Smeets, P. A. (2017). A tale of gastric layering and sieving: Gastric emptying of a liquid meal with water blended in or consumed separately. Physiology & Behavior, 176, 26-30. doi:10.1016/j.physbeh.2017.03.029

Davison, G. W., Mcclean, C., Brown, J., Madigan, S., Gamble, D., Trinick, T., & Duly, E. (2008). The Effects Of Ingesting a Carbohydrate-Electrolyte Beverage 15 Minutes Prior to High-Intensity Exercise Performance. Research in Sports Medicine, 16(3), 155-166. doi:10.1080/15438620802103155

Furuyashiki, T., Tanimoto, H., Yokoyama, Y., Kitaura, Y., Kuriki, T., & Shimomura, Y. (2014). Effects of ingesting highly branched cyclic dextrin during endurance exercise on rating of perceived exertion and blood components associated with energy metabolism. Bioscience, Biotechnology, and Biochemistry, 78(12), 2117-2119. doi:10.1080/09168451.2014.943654

Gonzalez, J., Fuchs, C., Betts, J., & Loon, L. V. (2017). Glucose Plus Fructose Ingestion for Post-Exercise Recovery—Greater than the Sum of Its Parts? Nutrients, 9(4), 344. doi:10.3390/nu9040344

Jentjens, R. L. (2005). Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. Journal of Applied Physiology, 100(3), 807-816. doi:10.1152/japplphysiol.00322.2005

Jeukendrup, A. E., & Moseley, L. (2010). Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scandinavian Journal of Medicine & Science in Sports, 20(1), 112-121. doi:10.1111/j.1600-0838.2008.00862.x

Jeukendrup, A. E., & Jentjens, R. (2000). Oxidation of Carbohydrate Feedings During Prolonged Exercise. Sports Medicine, 29(6), 407-424. doi:10.2165/00007256-200029060-00004

Jeukendrup, A. E. (2017). Training the Gut for Athletes. Sports Medicine, 47(S1), 101-110. doi:10.1007/s40279-017-0690-6

Kreider, R. B., Earnest, C. P., Lundberg, J., Rasmussen, C., Greenwood, M., Cowan, P., & Almada, A. L. (2007). Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers of anabolism, catabolism, and immunity. Journal of the International Society of Sports Nutrition, 4(1), 18. doi:10.1186/1550-2783-4-18

Leiper, J.B, K. Piehl Aulin, K. Sö. (2000). Improved Gastric Emptying Rate in Humans of a Unique Glucose Polymer with Gel-forming Properties. Scandinavian Journal of Gastroenterology, 35(11), 1143-1149. doi:10.1080/003655200750056600

Little, J. P., Chilibeck, P. D., Ciona, D., Forbes, S., Rees, H., Vandenberg, A., & Zello, G. A. (2010). Effect of Low- and High-Glycemic-Index Meals on Metabolism and Performance during High-Intensity, Intermittent Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 20(6), 447-456. doi:10.1123/ijsnem.20.6.447

Mitchell, J. B., Costill, D. L., Houmard, J. A., Flynn, M. G., Fink, W. J., & Beltz, J. D. (1988). Effects of carbohydrate ingestion on gastric emptying and exercise performance. Medicine & Science in Sports & Exercise, 20(2), 110-115. doi:10.1249/00005768-198820020-00002

Oliveira, E. D., & Burini, R. (2014). Carbohydrate-Dependent, Exercise-Induced Gastrointestinal Distress. Nutrients, 6(10), 4191-4199. doi:10.3390/nu6104191

Rowlands, D. S., Thorburn, M. S., Thorp, R. M., Broadbent, S., & Shi, X. (2008). Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. Journal of Applied Physiology, 104(6), 1709-1719. doi:10.1152/japplphysiol.00878.2007

Rowlands, D. S., & Houltham, S. (2017). Multiple-transportable Carbohydrate Has Minimal Impact On Long-distance Triathlon Race Performance. Medicine & Science in Sports & Exercise, 49, 188-189. doi:10.1249/01.mss.0000517351.29614.5c

Takii, H., (Nagao), Y. T., Kometani, T., Nishimura, T., Nakae, T., Kuriki, T., & Fushiki, T. (2005). Fluids Containing a Highly Branched Cyclic Dextrin Influence the Gastric Emptying Rate. International Journal of Sports Medicine, 26(4), 314-319. doi:10.1055/s-2004-820999

Tsintzas, K., & Williams, C. (1998). Human Muscle Glycogen Metabolism During Exercise. Sports Medicine, 25(1), 7-23. doi:10.2165/00007256-199825010-00002

BCAAs, Beta Alanine, and Citrulline Malate (Q//AMINO)

 

Howatson, G., Hoad, M., Goodall, S., Tallent, J., Bell, P. G., & French, D. N. (2012, May 08). Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. Retrieved May 27, 2017, from https://jissn.biomedcentral.com/articles/10.1186/1550-2783-9-20

Pérez-Guisado, J. (2010). Citrulline Malate Enhances Athletic Anaerobic Performance an… : The Journal of Strength & Conditioning Research. Retrieved May 27, 2017, from http://journals.lww.com/nsca-jscr/Abstract/2010/05000/Citrulline_Malate_Enhances_Athletic_Anaerobic.9.aspx

 

Sale, C., Saunders, B., & Harris, R. C. (2009, December 20). Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Retrieved May 27, 2017, from https://link.springer.com/article/10.1007/s00726-009-0443-4

Suzuki, T., Morita, M., Kobayashi, Y., & Kamimura, A. (2016, February 19). Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. Retrieved May 27, 2017, from https://jissn.biomedcentral.com/articles/10.1186/s12970-016-0117-z

Williams, M. (2005). Dietary Supplements and Sports Performance: Amino Acids. Retrieved May 27, 2017, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2129148/

Bailey, S. J., Blackwell, J. R., Lord, T., Vanhatalo, A., Winyard, P. G., & Jones, A. M. (2015). L-Citrulline supplementation improves O2uptake kinetics and high-intensity exercise performance in humans. Journal of Applied Physiology, 119(4), 385-395. doi:10.1152/japplphysiol.00192.2014

Chen, I., Chien, K. C., Chang, J., Huang, M., Liang, Y., & Liu, T. (2015). Branched-Chain Amino Acids and Arginine Improve Performance in Two Consecutive Days of Simulated Handball Games in Male and Female Athletes: A Randomized Trial. Plos One, 10(3). doi:10.1371/journal.pone.0121866

Chen, I., Wu, H., Chen, C., Chou, K., & Chang, C. (2016). Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 13(1). doi:10.1186/s12970-016-0140-0

Kiyici, F., Eroğlu, H., Kishali, N. F., & Burmaoglu, G. (2017). The Effect of Citrulline/Malate on Blood Lactate Levels in Intensive Exercise. Biochemical Genetics. doi:10.1007/s10528-017-9807-8

Martínez-Sánchez, A., Ramos-Campo, D. J., Fernández-Lobato, B., Rubio-Arias, J. A., Alacid, F., & Aguayo, E. (2017). Biochemical, physiological, and performance response of a functional watermelon juice enriched in L-citrulline during a half-marathon race. Food & Nutrition Research, 61(1), 1330098. doi:10.1080/16546628.2017.1330098

Plénier, S. L., Goron, A., Sotiropoulos, A., Archambault, E., Guihenneuc, C., Walrand, S., . . . Moinard, C. (2016). Citrulline directly modulates muscle protein synthesis via the PI3K/MAPK/4E-BP1 pathway in a malnourished state: evidence from in vivo, ex vivo, and in vitro studies. American Journal of Physiology – Endocrinology And Metabolism, 312(1). doi:10.1152/ajpendo.00203.2016

Suzuki, T., Morita, M., Kobayashi, Y., & Kamimura, A. (2016). Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. Journal of the International Society of Sports Nutrition, 13(1). doi:10.1186/s12970-016-0117-z

Dudgeon, W. D., Kelley, E. P., & Scheett, T. P. (2016). In a single-blind, matched group design: branched-chain amino acid supplementation and resistance training maintains lean body mass during a caloric restricted diet. Journal of the International Society of Sports Nutrition, 13(1). doi:10.1186/s12970-015-0112-9

Hoffman, J. R., Zuckerman, A., Ram, O., Sadot, O., Stout, J. R., Ostfeld, I., & Cohen, H. (2017). Behavioral and inflammatory response in animals exposed to a low-pressure blast wave and supplemented with β-alanine. Amino Acids, 49(5), 871-886. doi:10.1007/s00726-017-2383-8

Bellinger, P. M., & Minahan, C. L. (2016). Additive Benefits of β-Alanine Supplementation and Sprint-Interval Training. Medicine & Science in Sports & Exercise, 48(12), 2417-2425. doi:10.1249/mss.0000000000001050

Dolan, E., Elliott-Sale, K., Artioli, G. G., Swinton, P. A., Roschel, H., Sale, C., . . . Saunders, B. (2017). β-alanine Supplementation To Improve Exercise Capacity And Performance. Medicine & Science in Sports & Exercise, 49, 84. doi:10.1249/01.mss.0000517057.86897.7e

Trexler, E. T., Smith-Ryan, A. E., Stout, J. R., Hoffman, J. R., Wilborn, C. D., Sale, C., . . . Antonio, J. (2015). International society of sports nutrition position stand: Beta-Alanine. Journal of the International Society of Sports Nutrition, 12(1). doi:10.1186/s12970-015-0090-y

 

Athletes Resource Calculator (A.R.C.)

 

Hansen, M., Bangsbo, J., Jensen, J., Krause-Jensen, M., Bibby, B. M., Sollie, O., . . . Madsen, K. (2016). Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. Journal of the International Society of Sports Nutrition, 13(1). doi:10.1186/s12970-016-0120-4

Hulmi, J. J., Laakso, M., Mero, A. A., Häkkinen, K., Ahtiainen, J. P., & Peltonen, H. (2015). The effects of whey protein with or without carbohydrates on resistance training adaptations. Journal of the International Society of Sports Nutrition, 12(1). doi:10.1186/s12970-015-0109-4

Kerksick, C. M., & Leutholtz, B. (2005). Nutrient Administration and Resistance Training. Journal of the International Society of Sports Nutrition, 2(1), 50. doi:10.1186/1550-2783-2-1-50

Kreider, R. B., Earnest, C. P., Lundberg, J., Rasmussen, C., Greenwood, M., Cowan, P., & Almada, A. L. (2007). Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers of anabolism, catabolism, and immunity. Journal of the International Society of Sports Nutrition, 4(1), 18. doi:10.1186/1550-2783-4-18

Rustad, P. I., Sailer, M., Cumming, K. T., Jeppesen, P. B., Kolnes, K. J., Sollie, O., . . . Jensen, J. (2016). Intake of Protein Plus Carbohydrate during the First Two Hours after Exhaustive Cycling Improves Performance the following Day. Plos One, 11(4). doi:10.1371/journal.pone.0153229

Smiles, W. J., Hawley, J. A., & Camera, D. M. (2016). Effects of skeletal muscle energy availability on protein turnover responses to exercise. Journal of Experimental Biology, 219(2), 214-225. doi:10.1242/jeb.125104

Zawadzki, K. (1992). Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. Journal of Applied Physiology, 72(5), 1854-1859.

X